Package: drord 1.0.1.9000

drord: Doubly-Robust Estimators for Ordinal Outcomes

Efficient covariate-adjusted estimators of quantities that are useful for establishing the effects of treatments on ordinal outcomes (Benkeser, Diaz, Luedtke 2020 <doi:10.1111/biom.13377>)

Authors:David Benkeser [aut, cre, cph]

drord_1.0.1.9000.tar.gz
drord_1.0.1.9000.zip(r-4.5)drord_1.0.1.9000.zip(r-4.4)drord_1.0.1.9000.zip(r-4.3)
drord_1.0.1.9000.tgz(r-4.4-any)drord_1.0.1.9000.tgz(r-4.3-any)
drord_1.0.1.9000.tar.gz(r-4.5-noble)drord_1.0.1.9000.tar.gz(r-4.4-noble)
drord_1.0.1.9000.tgz(r-4.4-emscripten)drord_1.0.1.9000.tgz(r-4.3-emscripten)
drord.pdf |drord.html
drord/json (API)
NEWS

# Install 'drord' in R:
install.packages('drord', repos = c('https://benkeser.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/benkeser/drord/issues

Datasets:
  • covid19 - Simulated COVID-19 outcomes for hospitalized patients.

On CRAN:

causal-inferencecovid-19double-robustmann-whitneyordinal-regression

4.38 score 4 stars 12 scripts 134 downloads 1 exports 32 dependencies

Last updated 4 years agofrom:112d8041c7. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winNOTENov 01 2024
R-4.3-macNOTENov 01 2024

Exports:drord

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmenumDerivordinalpillarpkgconfigR6RColorBrewerrlangscalestibbleucminfutf8vctrsVGAMviridisLitewithr

drord: Doubly robust estimators of ordinal treatment effects

Rendered fromusing_drord.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2021-05-20
Started: 2020-05-20

Readme and manuals

Help Manual

Help pageTopics
Compute a BCa confidence intervalbca_interval
Compute a BCa bootstrap confidence interval for the weighted mean. The code is based on the slides found here: http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdfbca_logodds
Compute a BCa bootstrap confidence interval for the Mann-Whitney parameter. The code is based on the slides found here: http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdfbca_mannwhitney
Compute a BCa bootstrap confidence interval for the weighted mean. The code is based on the slides found here: http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdfbca_marg_dist
Compute a BCa bootstrap confidence interval for the weighted mean. The code is based on the slides found here: http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdfbca_wmean
Used to compute treatment-specific BCa intervals for the CDF and PMFcompute_trt_spec_bca_intervals
Compute simultaneous confidence interval for treatment-specific marginal distributioncompute_trt_spec_marg_dist_ptwise_ci
Compute simultaneous confidence interval for treatment-specific marginal distributioncompute_trt_spec_marg_dist_simul_ci
Simulated COVID-19 outcomes for hospitalized patients.covid19
Doubly robust estimates of for evaluating effects of treatments on ordinal outcomes.drord
Get EIF estimates for treatment-specific PMF at a particular level of the outcomeeif_pmf_k
Get EIF estimates for treatment-specific CDF at a particular level of the outcomeeif_theta_k
Map an estimate of the conditional PMF into an estimate of the conditional CDFestimate_cdf
Compute confidence interval/s for the log-odds parametersestimate_ci_logodds
Compute confidence interval/s for the Mann-Whitney parameterestimate_ci_mannwhitney
Compute confidence interval/s for the treatment specific PMF and CDF.estimate_ci_marg_dist
Compute confidence interval/s for the weight mean parametersestimate_ci_wmean
Map an estimate of treatment-specific PMF into an estimate of treatment specific conditional mean for each observation.estimate_cond_mean
Obtain an estimate of the efficient influence function for the treatment-specific weighted mean parameterestimate_eif_wmean
implements a plug-in estimator of equation (2) in Diaz et alestimate_logodds
Compute the estimate of Mann-Whitney based on conditional CDF and PMFestimate_mannwhitney
Get a treatment-specific estimate of the conditional PMF. Essentially this is a wrapper function for 'fit_trt_spec_reg', which fits the proportion odds model in a given treatment arm.estimate_pmf
Estimate probability of receiving each level of treatmentestimate_treat_prob
Compute the estimate of the weighted mean parameter based on estimated PMF in each treatment arm.estimate_wmean
Get the covariance matrix for betaevaluate_beta_cov
Compute the estimated gradient of the Mann-Whitney parameter. Needed to derive standard error for Wald confidence intervals.evaluate_mannwhitney_gradient
Get eif estimates for treatment-specific CDFevaluate_marg_cdf_eif
Evaluate pointwise confidence interval for marginal CDF.evaluate_marg_cdf_ptwise_ci
Evaluate simultaneous confidence interval for marginal PMF or CDF.evaluate_marg_dist_simul_ci
Get eif estimates for treatment-specific PMFevaluate_marg_pmf_eif
Evaluate pointwise confidence interval for marginal PMF.evaluate_marg_pmf_ptwise_ci
get a covariance matrix for the estimated CDFevaluate_theta_cov
Get a matrix of eif estimates for treatment-specific PMFevaluate_trt_spec_pmf_eif
get a matrix of eif estimates for the treatment-specific CDF estimatesevaluate_trt_spec_theta_eif
Helper function to fit a treatment specific outcome regression. If there are more than 2 observed levels of the outcome for the specified treatment arm, then 'polr' is used from the 'MASS' package. Otherwise logistic regression is used. In both cases, inverse probability of treatment weights are included in the regression. If there are levels of the outcome that are not observed in this treatment group, then 0's are added in. The function returns a matrix with named columns corresponding to each outcome (ordered numerically). The entries represent the estimated covariate-conditional treatment-specific PMF.fit_trt_spec_reg
Compute one log odds based on a given data set.get_one_logodds
Compute one estimate of Mann-Whitney parameter based on a given data set.get_one_mannwhitney
Compute one estimate of the marginal CDF/PMF on a given data set.get_one_marg_dist
Compute one weighted mean based on a given data set.get_one_wmean
Get a response from model formulagetResponseFromFormula
Compute jackknife log-odds estimates.jack_logodds
Compute Mann-Whitney log-odds estimates.jack_mannwhitney
Compute jackknife distribution estimates.jack_marg_cdf
Compute jackknife weighted mean estimates.jack_wmean
Marginalize over empirical distribution to obtain marginal treatment-specific CDF estimate.marginalize_cdf
Marginalize over empirical distribution to obtain marginal treatment-specific PMF estimate.marginalize_pmf
Get one bootstrap computation of the log odds parameters.one_boot_logodds
Get one bootstrap computation of the Mann-Whitney parameter.one_boot_mannwhitney
Get one bootstrap computation of the CDF and PMF estimatesone_boot_marg_dist
Get one bootstrap computation of the weighted mean parameters.one_boot_wmean
Print the output of a '"drord"' object.plot.drord
Fits a proportional odds model via pooled logistic regression.POplugin
Predict method for a 'POplugin' objectpredict.POplugin
Print the output of a '"drord"' object.print.drord
Trimmed logistic functiontrimmed_logit
Compute a Wald confidence interval for the weighted meanwald_ci_wmean